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Part I: Research Question
A. Purpose of Report

Analysis Context

As machine learning research grows, there are some companies who are looking to harness

Natural Language Processing for translational and interpreting work. AI development in this

area of research, known as Machine Translation, has "led to very significant improvements in

translation quality" in recent years (Stanford NLP Group, 2022). A new challenge in particular is

presented when attempting NLP for sign languages, as they neither have a verbal nor written

component. Therefore, new approaches to NLP must be considered when it comes to

interpreting sign languages. This project acts as a predecessor to NLP for American Sign

Language (ASL), where the first step in the process is to classify hand shape from an individual

video frame or image. Our goal is to create a model that classifies hand shapes as a

proof-of-concept for such a system.

Research Question

The purpose of this data analysis is to answer the research question: "To what extent can

hand shape be accurately classified from images?" This is a pertinent research question

because we need to know the maximum accuracy a model could achieve to be able to tell if

the Machine Translation System could be viable.

Hypothesis

Our hypothesis is that images can be classified with 90% accuracy using Convolutional

Neural Networks.
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B. Analysis Environment

Environment Description

Environment Setup

Our environment setup is as follows:

# Initial Environment setup

setwd("C:/Users/bkozura/Documents/asl_images/")

library(caret)
library(jsonlite)
library(keras)
library(tidytext)
library(tidyverse)
library(imager)
library(magick)

#  Classification and Regression Training
#  A Simple and Robust JSON Parser and Generator for R
#  R Interface to 'Keras'
#  Text Mining using Tidy tools
#  R Packages for Data Science
#  Image data manipulation
#  Image data manipulation
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Part II: Data Preparation

C. Data Collection

The dataset used for this analysis "Synthetic ASL Alphabet" was created by a software

development company Lexset (Lexset, 2022) and was listed as Creative Commons

Attribution-NonCommercial as a way to promote Lexset's synthetic data generator platform

“Seahaven” which was used to create the data set. The data was obtained from open data

repository Kaggle and was split into 'train' and 'test' data sets–each with images divided into

folders by classification. It consists of 27,000 images across 27 categories (26 alphabet +

"Blank").  One advantage of Synthetic data  is that you can create a lot of it at a time, but a

disadvantage is that it can result in data that is too ideal/ not diverse. One challenge to

overcome in this dataset was to figure out the best method of retrieving the image data, since

27000 x 277x277x3 results in a huge amount of data. Our solution was to rent a VM to handle

the large memory needs.

Example images from the dataset
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C. Data Extraction & Preparation

Data Preparation Steps

The Data Preparation phase of this project can be broken down into multiple steps:

(a) Data Extraction

(b) Image Preprocessing

(c) Data splitting

(a) Data Extraction & Organization

RGB data is extracted from the images using Kera's internal flow_images_from_directory

function, which allows us to include our preprocessing steps in the data extraction phase. One

advantage of using Keras is that it has a lot of built-in machine learning functionality, but a

disadvantage is that it requires the use of both Python and R.  During this process all data

augmentation, resizing, and manipulations occur. Additionally, we split the dataset into a

72-19-10 train-validation-test split.

RGB data from image
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# Load Data
dir(wd)

[1] "example.png"   "test"    "train"    "tuning_results.csv"

path_train <- paste(wd,"/train", sep="")
path_test <- paste(wd,"/test", sep="")
label_list <- dir(path_train)
n_classes <- length(label_list) # 27 Classes
save(label_list, file="label_list.R")
label_list
[1] "A"     "B"     "Blank" "C"     "D"     "E" "F"     "G"
[9] "H"     "I"     "J"     "K"     "L"     "M"     "N"     "O"
[17] "P"     "Q"     "R"     "S"     "T"     "U"     "V"     "W"
[25] "X"     "Y"     "Z"

(b) Image Data Preprocessing

For our image data preprocessing, we will:

● Resize the images from 513x512 pixels to 227x227 pixels

● Rescale the image data to values between 0 and 1 by dividing rgb values by 255

# Image Preprocessing variables
img_size <- 227 # height and width
target_size <- c(img_size, img_size)

train_data_gen <- image_data_generator(rescale = 1/255, validation_split = .2)
test_data_gen <- image_data_generator(rescale = 1/255)

(c) Data Set Splitting

We used a 90-10 split for the training and testing data, with a further training-validation

split of 80-20, resulting in the following distribution:

Data set Percent Distribution Number of Images

train 72% 19440

validation 18% 4860

test 10% 2700

total 27000
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train_images <- flow_images_from_directory(path_train,
train_data_gen,
subset = 'training',
target_size = target_size,
class_mode = 'categorical',
shuffle=TRUE,
classes = label_list,
seed = 2021)

> Found 19440 images belonging to 27 classes.

validation_images <- flow_images_from_directory(path_train,
train_data_gen,
subset = validation,
target_size = target_size,
class_mode = 'categorical',
classes = label_list,
seed = 2021)

> Found 4860 images belonging to 27 classes.

test_images <- flow_images_from_directory(path_test,
test_data_gen,
target_size = target_size,
class_mode = "categorical",
classes = label_list,
shuffle = FALSE,
seed = 2022)

> Found 2700 images belonging to 27 classes.

We can also see that the dataset is balanced because the images are evenly distributed across

all 27 classes.
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Part III: Network Architecture

D. Convolution Neural Network

The data analysis technique that will be used to classify the images is a Convolutional Neural

Network using Keras/Tensorflow. CNNs are industry standards for image classification

analyses since they perform "phenomenally well on computer vision tasks" (Rizvi, 2022). Rather

than the analyst identifying the key features of a class of images, CNNs analyze images into

three-dimensional matrices representing color components per pixel and  "'learns' how to

extract these features, and ultimately infer what object they constitute" (Google Developers,

2022).  One advantage of a CNN is that because the network learns from the raw data rather

than be interpreted by the analyst, it is able to identify features unnoticed by humans.

Alternatively, a disadvantage of using a CNN is that a large amount of data is required for

training to yield good results.

CNN Model Structure

Our model consists of 13 layers following a familiar CNN structure:   a feature-mapping section

(Convolution layers w/ ReLu and Pooling layers) and a classification section (Dense Layers w/

ReLu and final Dense layer with SoftMax). The complete structure of the CNN can be observed

in the following diagram and the tables below.
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CNN Model Layers

Convolutional Neural Network Model

Layer Type k Stride Padding Shape-out activation

0 Input - - - 227, 227, 3 -

1 Convolutional 11 4 'VALID' 55, 55, 96 'relu'

2 MaxPooling 3 2 'VALID' 27, 27, 96 -

3 Convolutional 5 1 'SAME' 27, 27, 256 'relu'

4 MaxPooling 3 2 'VALID' 13, 13, 256 -

5 Convolutional 3 1 'SAME' 13, 13, 384 'relu'

6 Convolutional 3 1 'SAME' 13, 13, 384 'relu'

7 Convolutional 3 1 'SAME' 13, 13, 256 'relu'

8 MaxPooling 3 2 'VALID' 6, 6, 256 -

9 Flatten - - - 9216 -

10 Dropout - - - 9216 -

11 Dense - - - 4096 'relu'

12 Dense - - - 4096 'relu'

13 Output (Dense) - - - 27 'softmax'

Most of our convolutional and dense layers use a rectified linear activation function ("ReLU")

while our final classification layer uses the softmax activation function, which is essentially " a

smooth version of the winner-takes-all activation model" (Bishop 2013).
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Hyperparameters Summary

Parameter Chosen Value

activation functions 'relu', 'softmax'

loss function 'categorical_crossentropy'

optimizer adam, learning_rate = 0.00001

dropout_rate 0.00000001

initializers kernel & bias = 'random_uniform'

epochs max = 25

stopping criteria monitor = val_accuracy, patience = 2

evaluation metric accuracy, kappa
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Our CNN Model code is as follows:

# Custom Layer functions

con_layer <- function(x,filters, ksize, bias, strides=1, padding='SAME'){
layer_conv_2d(x, filters = filters,

kernel_size = c(ksize, ksize),
padding = padding,
activation = "relu",
strides=c(strides, strides),
use_bias = TRUE,
kernel_initializer='random_uniform',
bias_initializer='random_uniform')}

pool_layer <- function(x){
layer_max_pooling_2d(x, pool_size = c(3, 3), strides=2, padding= 'VALID') }

fully_connected_layer <- function(units, activation = "relu", name){
layer_dense(units = units,

activation = activation,
kernel_initializer='random_uniform',
bias_initializer='random_uniform') }

# Create Model Function

model_a <- function(learning_rate=0.0001, dropout_rate=0.00000001){
k_clear_session()

model <- keras_model_sequential(input_shape = c(img_size,img_size,3)) %>%
con_layer(filters=96, ksize=11, strides = 4, padding = 'VALID') %>%
pool_layer() %>%
con_layer(filters=256, ksize=5) %>%
pool_layer() %>%
con_layer(filters=384, ksize=3) %>%
con_layer(filters=384, ksize=3) %>%
con_layer(filters=256, ksize=3) %>%
pool_layer() %>%
layer_flatten() %>%
layer_dropout(dropout_rate)%>%
layer_dense(units = 4096, activation= "relu", kernel_initializer='random_uniform',

bias_initializer='random_uniform') %>%
layer_dense(units = 4096, activation= "relu", kernel_initializer='random_uniform',

bias_initializer='random_uniform') %>%
layer_dense(name="Output", units = n_classes, activation = "softmax")

model %>% compile(loss = "categorical_crossentropy",
optimizer = optimizer_adam(learning_rate= learning_rate),
metrics = "accuracy")

return(model)
}
my_model <- model_a(learning_rate=0.00001)
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We can examine the summary of our CNN model:

Model Fitness & Addressing Overfitting

Our model at first showed evidence of overfitting, so we added a dropout layer to limit the

effect of overfitting.

Saving the Pre-training RNN model

We save the untrained neural network, so we can reuse the structure again later if desired.

# Save Model
my_model %>% save_model_tf("/asl_alexnet_model_pretraining")
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Part IV: Model Evaluation

F. Model Fitness

Number of Epochs & Stopping Criteria

We set our 'max' number of epochs to 25 but also add a callback for early stopping with a

patience of 2, meaning the training will end early if further improvement is not observed.

Model Training

We run the training data and save our epochs and save the results under hist.

# Train Model
batch_size <- 128
epochs <- 25
hist <- my_model %>% fit(
train_images,
# train_labels,
#steps_per_epoch = train_images$n %/% batch_size,
epochs = epochs,
validation_data = validation_images,
#validation_steps = validation_images$n %/% batch_size,
verbose = 2,
callbacks = list(callback_early_stopping(monitor = "val_accuracy", min_delta=0.001,

patience = 2, restore_best_weights = TRUE))
)

Our model training resulted in an accuracy of over 99% for training data and over 94% for

validation data.
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Example Prediction

We will look at an example image from the test set

and see how the model makes a prediction:

# Load example image

test_image <- image_load("example.png",
       target_size = target_size)

x <- image_to_array(test_image)
x <- array_reshape(x, c(1, dim(x)))
x <- x/255

# Classify example image

pred <- my_model %>% predict(x)
pred <- data.frame("Class" = label_list, "Probability" = t(pred))
pred <- pred[order(pred$Probability, decreasing=T),][1:5,]
pred$Probability <- paste(format(100*pred$Probability,2),"%")
pred
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Part VI: Interpretation and Implications of Analysis Results

Prediction Accuracy

When we evaluate our model on the training data, we get an accuracy of 99.9%, and when

we evaluate our model on the testing data, we get an accuracy of 93.4%.

my_model %>% evaluate(train_images)
>       loss    accuracy
> 0.009826553 0.999382734

my_model %>% evaluate(test_images)
>     loss  accuracy
> 0.2397213 0.9377778

We can now explore the predictions on the test set more in-depth

# Run model on test data

predictions <- my_model %>%  predict(test_images, generator = test_data_gen) %>%
as.data.frame()

names(predictions) <- label_list
predictions$predicted_class <-  label_list[apply(predictions,1,which.max)]
predictions$true_class <- label_list[test_images$classes+1]
cmatrix <- as.matrix(table(Actual = predictions$true_class, Predicted =

predictions$predicted_class))
cmatrix
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# Evaluation Metrics
n_images <- sum(cmatrix)
n_classes <- nrow(cmatrix)
n_correct_by_class <- diag(cmatrix)
n_per_class <- apply(cmatrix, 1, sum)
pred_per_class <- apply(cmatrix, 2, sum)
act_dist <- n_per_class / n_images
pred_dist <- pred_per_class / n_images

metrics <- data.frame("Class"= label_list)
metrics$precision <- n_correct_by_class / pred_per_class
metrics$recall <-  n_correct_by_class / n_per_class
metrics$f1 <- 2 * metrics$precision * metrics$recall /

(metrics$precision + metrics$recall)
summary(metrics[,c(-1)])

macros <- data.frame("Value"=colMeans(metrics[,c(-1)]))
macros["accuracy",] <- rbind(sum(n_correct_by_class) / n_images)
macros["rand_accuracy",] <- rbind(sum(act_dist*pred_dist))
macros["kappa",] <- rbind((accuracy - rand_accuracy) / (1 - rand_accuracy))
macros$Value <- round(as.numeric(macros$Value),6)
macros

We evaluated the system based on accuracy and Kappa, both of which came out at  over 93%,

so our hypothesis was correct.

Saving the Trained RNN model

We save the trained neural network, and can load it at a later date with load_model_tf.

# Save Model
my_model %>% save_model_tf("/asl_alexnet_model")
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G. Limitations & Recommendations

Limitations of Synthetic Data

● Synthetic Data tends to result in more 'ideal' data rather than real-world data.

Solution: Augment data with more diverse pre-processing and real-world images.

Limitations of CNNs (Rizvi, 2020)

● CNNs require a large amount of data.

● CNNs do not encode the position and orientation of objects in images.

● CNNs do not incorporate time-series data.

Solution:  Hybridize with other models in the next phase

Recommended Course of Action

Continued Training with more Real-World Data

● Expand Training & Testing Data: Enhance with "Real-World" data and augment more

synthetic data that is "less-than-ideal" to get more diversity.

Hybridize with Other Models

● Position Tracking : Add an additional network (potentially an RNN) to locate the position

of the hands in the images.

● Analysis over Time: Implement a time-series component to track the location and shape

of the hand over time.
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Part VI: Supporting Documents

H.  Analysis Report

R Notebook Link

I.  Executive Summary

Document Link

J.  Analysis Presentation

Panopto Link

Slides

https://drive.google.com/file/d/1Am-F05HRnWVZuBYYBhQbctMVBJEZ91NC/view?usp=sharing
https://docs.google.com/document/d/18kRMAkCIzXZL9meT3EZLWZllBpOCWQXwiAU17Fftayc/edit#
https://wgu.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=6d0ed448-c4e5-4eb5-a8bc-af21003b1f8c&start=28.258336#
https://drive.google.com/file/d/1Am-F05HRnWVZuBYYBhQbctMVBJEZ91NC/view?usp=sharing
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